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ABSTRACT
We present a common unifying macroscopic framework for precursors in relativistic shock waves. These precursors transfer
energy and momentum from the hot downstream to the cold upstream, modifying the shock structure. Derishev & Piran (2016)
have shown that in a steady state, there is a maximal fraction of the downstream energy flux that the precursor can carry. We show
that at this critical value, the shock disappears, and the flow passes through a sonic point. This behavior resembles the classical
Newtonian Rayleigh flow problem. At the critical value, the transition is unstable as perturbations in the upstream accumulate at
the sonic point. Thus, if such a point is reached, the shock structure is drastically modified, and the flow becomes turbulent.
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1 INTRODUCTION

Relativistic shock waves are ubiquitous in numerous objects, ranging
from AGNs to Gamma-Ray Bursts. A common image of a shock is
of an abrupt discontinuity with no information passing from the
downstream to the upstream. However, in many cases, this picture is
oversimplified. A precursor can propagate ahead of the shock into the
upstream. Precursors that can overtake the shock include fast particles
(sometimes called cosmic rays), radiation (as in the case of radiation-
mediated shocks), or supersonic plasma waves. If sufficiently strong,
they can significantly modify the upstream and, consequently, the
overall shock structure.

The role of fast particles as precursors of Newtonian shocks has
been extensively studied since the classical work of Bell (2004). It
was later extended to relativistic shocks (e.g. Couch et al. 2008; Nakar
et al. 2011; Lemoine et al. 2019). In radiation-mediated shocks, pho-
tons transfer energy from the downstream to the upstream. There,
the shock structure is completely dominated by this process, and
the width of the region is the mean free path of the photons. De-
tailed studies of such shocks have been carried out both numerically
and analytically (Budnik et al. 2010b; Nakar & Sari 2012; Granot
et al. 2018). A different precursor was considered within the “pair-
balance" model (Derishev & Piran 2016). In this model, high-energy
photons generated in the downstream annihilate with low-energy
ones in the upstream near the shock, transferring energy and mo-
mentum to the upstream and modifying its structure. Garasev &
Derishev (2016) have shown using numerical simulations that this
may lead to a Weibel instability and generation of magnetic fields
upstream. Another modification of the upstream structure can arise
from low-frequency electromagnetic waves emitted by magnetized
relativistic shocks (Lyubarsky 2018). In particular, such an interac-
tion in electron-ion flows leads to electron heating and even to the
non-thermal particle acceleration (Lyubarsky 2006; Hoshino 2008;
Sironi & Spitkovsky 2011; Iwamoto et al. 2022).
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All these phenomena incorporate energy and momentum trans-
fer from the downstream to the upstream. Often, these fluxes are
negligible, but at times, as in radiation-mediated shocks and in the
“pair balance" model, they are dominant. We discuss here a general
framework for the macroscopic modification of a shock wave due to
energy and momentum transfer from the shock’s downstream to the
upstream. In §2 we describe, following Derishev & Piran (2016), the
steady state problem for a relativistic shock. There is a maximal frac-
tion of the total energy that can be transferred from the downstream
to the upstream in a steady-state solution. This result resembles the
Newtonian Rayleigh flow problem, Concerned with a flow modified
by heat deposition (or removal), in which there is also a maximal
amount of heat that can be added (or removed) from the flow. At the
maximum, the shock wave disappears completely, and the solution
passes through a sonic point. In §3 we show that as the flow velocity
approaches the speed of sound (from above), instability develops.
Possible implications of our results to different astrophysical models
and, in particular, of the turbulent flow near the critical point for
magnetic field build-up and particle acceleration are discussed at 4.

2 STEADY STATE SOLUTION

We consider the energy and momentum transfer from the shock
downstream to the upstream. The process is studied in the shock
frame. The overall structure of the flow is the following (see Fig.
1). The shock is placed at 𝑥1 = 0, and the flow is directed towards
negative 𝑥. At the far upstream (formally at 𝑥1 → ∞) the flow is
cold. The relativistically hot plasma downstream emits a fraction of
its energy upstream in the form of radiation or relativistic particles.
This energy is absorbed in an extended region upstream of the shock
so that the flow is heated and decelerated. As a result, the shock
discontinuity decreases and may even disappear at all. Global energy
conservation implies that far downstream (formally at 𝑥1 → −∞),
the flow parameters are related to the far upstream parameters by the
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Figure 1. A schematic description of the energy 𝑆0 and momentum 𝑆1 fluxes
from the downstream (where the extraction region is marked in red) to a point
in the upstream (marked in green). Generally, the energy and momentum
deposition is not limited to a single location, and the fluxes are a function of
the distance from the shock.

standard Taub adiabat. We are now going to study how absorption
affects the parameters of the upstream flow and of the shock wave.

The relativistic flow of a perfect fluid is described by an energy-
momentum tensor

𝑇 𝜇𝜈 = 𝑤𝑢𝜇𝑢𝜈 + 𝑔𝜇𝜈 𝑝 , (1)

where 𝑝 is the pressure, 𝑤 ≡ 𝑒 + 𝑝 is the enthalpy, 𝑒 is the en-
ergy density, 𝑢𝜈 is the four-velocity, 𝑔𝜇𝜈 ≡ 𝜂𝜇𝜈 is the flat space
metric. The motion is one-dimensional and stationary in the rest
frame of the shock. In this case 𝑢𝜇 (𝑥) = (Γ(𝑥), Γ(𝑥)𝛽(𝑥), 0, 0),
where we denote by 𝑥 ≡ 𝑥1 the spatial coordinate along which
the shock moves. The transfer of energy and momentum from the
downstream to the upstream is described by the vector function
𝑆𝜇 (𝑥) ≡ (𝑆0 (𝑥), 𝑆1 (𝑥), 0, 0), the components of which are defined
as the energy and momentum fluxes emitted from the downstream
and absorbed by the upstream flow when it moves from infinity to
the distance 𝑥 ahead of the shock. Then, the equations of motion are
written as:
𝜕𝑇 𝜇𝜈

𝜕𝑥𝜈
=

𝑑𝑆𝜇

𝑑𝑥
. (2)

The equations of motion are supplemented by the continuity of the
baryon number density:

𝜕 (𝑛𝑢𝜇)
𝜕𝑥𝜇

= 0 . (3)

The absorbed energy flux, 𝑆0, is conveniently normalized by the
total upstream energy density flux:

𝑆0 (𝑥) ≡ 𝑄(𝑥)𝑇01
u , (4)

where the subscript 𝑢 denotes the far upstream region, where no
energy has been absorbed yet. Recall that the energy fluxes far up-
stream and far downstream are equal. The function 𝑄(𝑥) defines the
fraction of the downstream energy flux that reaches a point distanced
𝑥 from the shock. In this case, 𝑄(∞) = 0 (as we assume that all the
escaping flux is absorbed), whereas𝑄(0) = 𝑄0 is the total fraction of
energy that is extracted from the downstream. 𝑄(𝑥) decreases in the
upstream as less and less flux reaches further away from the shock. It
increases in the downstream as more and more flux is emitted, and it
reaches a maximum at the shock. The absorbed momentum, 𝑆1 (𝑥),
is assumed to be proportional to absorbed energy:

𝑆1 (𝑥) ≡ 𝜂𝛽𝑢𝑆
0 (𝑥) , (5)

where 𝜂 ≤ 1 is a constant. We describe the system as composed of
two fluids: Baryon fluid that dominates the mass density and remains
cold in the upstream flow, and radiation and lepton fluid that could
dominate the energy density and pressure. In addition to the original
electrons in the system, pairs can be produced in the absorption

Figure 2. 𝑄 vs. 𝛽Γ for different values of 𝜂 (for 𝛽uΓu = 30). The red line
marks the speed of sound for 𝜂 = 0, defined at 𝑑𝑄 = 0. 𝛽★ = 1/

√
3 is a good

approximate for 𝛽 for which 𝑄 is maximal.

region. The leptons are relativistic, and their equation of state that is
combined with the radiation equation of state satisfies:

𝑝 =
𝑒𝑙

3
=

𝑤𝑙

4
, (6)

where we ignore the mass of the leptons. The far upstream flow is
cold, such that:

𝑤u = 𝑛u . (7)

We use units in which the proton’s rest mass and the speed of light are
unity,𝑚𝑝 = 𝑐 = 1. In the absorption region, we have a combination of
baryons (whose thermal energy and pressure are neglected), leptons
(whose rest mass is neglected), and radiation. The upstream enthalpy
is written as

𝑤 = 𝑛 + 4
3
𝑒𝑙 . (8)

Under these assumptions, the conservation laws are written as:

𝑛𝛽Γ = 𝑛𝑢𝛽𝑢Γ𝑢 , (9)

𝑤𝛽Γ2 = 𝑛u𝛽uΓ
2
u [1 +𝑄(𝑥)] , (10)

𝑝 + 𝑤(𝛽Γ)2 = 𝑛u (𝛽uΓu)2 [1 − 𝜂𝑄(𝑥)] . (11)

Eliminating from these equations 𝑛, 𝑝 and 𝑤, we obtain:

𝑄(𝑥) = (1 + 4Γu𝛽uΓ𝛽)Γ − (1 + 4Γ2𝛽2)Γu
4𝜂ΓuΓ2𝛽𝛽𝑢 + (1 + 4𝛽2Γ2)Γu

. (12)

This equation relates the four-velocity at any point to the “returning"
flux at this point (measured in units of the upstream energy flux),
𝑄(𝑥). Once Γ is known, we determine 𝑛 from the continuity equa-
tion and 𝑤 from Eq. (10). Fig. 2, depicts the dependence of 𝑄 on Γ𝛽

for 𝛽uΓu = 30 for several values of 𝜂 (See also Fig. 2 of Derishev &
Piran 2016). First, we notice that momentum transfer changes quan-
titatively but not qualitatively the results. Notably, 𝑄max decreases
monotomically as 𝜂 increases. In fact, For Γ𝑢𝛽𝑢 = 30, the maximal
value of energy transferred is only ≈ 0.17. When the energy transfer
is maximal, the flow velocity at the location of the shock decreases to
the local speed of sound; see below. In this case, the shock disappears
completely, and the flow is continuously decelerated. The part of the
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Figure 3. 𝑄𝑚𝑎𝑥 as a function of 𝛽𝑢Γ𝑢. The maximal value of 𝑄𝑚𝑎𝑥 is 1/4,
achieved when 𝛽𝑢Γ𝑢 = 2 and 𝜂 = 0.

curve to the right of the maximum describes the deceleration of the
upstream from the initial velocity. The part to the left of the max-
imum describes the deceleration in the downstream until the Taub
adiabat determines the velocity.

The value of 𝑄max as a function of 𝜂 and the upstream conditions
is given by:

𝑄max (𝜂, 𝛽𝑢) =
𝑄max (𝜂 = 0, 𝛽𝑢)

1 + 4𝜂𝛽★𝛽𝑢/(1 + 3𝛽2
★)

(13)

𝑄max is shown at Fig. 3. One can see that it is maximal at Γ𝑢𝛽𝑢 ≈ 2.
If Γ𝑢 ≫ 1, the upstream flow becomes relativistically hot, and the
speed of sound approaches 𝛽𝑠 = 1/

√
3. As Γ𝑢 → ∞, the maximum

of Eq.(12) is achieved at 𝛽 = 1/
√

3. At this limit,

lim
Γ𝑢→∞

𝑄max =
2 −

√
3

√
3 + 2𝜂

(14)

For a given𝑄0 < 𝑄max, the relevant part of Fig. 2 for the upstream
flow is to the right of the maximal value point. The 𝛽 values corre-
sponding to 𝑄0 are the velocity jump at the shock. The region of the
curve for values of 𝛽 smaller than the speed of sound corresponds
to the downstream regime in which the energy extraction is build-
ing up, from zero at the distant downstream up to 𝑄0 at the shock
discontinuity.

As an example of a possible structure of the upstream (and the
downstream), Fig. 4 depicts the modified shock profile as a function
of 𝑥, given an absorption (and emission) profiles

𝑄(𝑥) = 𝑄0 ·
{
𝑒𝑥 𝑥 < 0 ,

𝑒−𝑥 𝑥 > 0 .
(15)

In the downstream region (𝑥 < 0), 𝑄(𝑥) describes the build-up of
the flux due to emission in this region. In the upstream region it
describes the decreasing absorbed flux. Note that this absorption law
is schematic, and generally relativistic effects make the absorption
law much more complicated (see e.g. Granot et al. 2018). In spite of
its simplicity, the resulting profile resembles those found numerically
by Lemoine et al. (2019) in PIC simulations in which high energy
particles accelerated in the downstream deposit their energy in the
upstream.

Consider now a flow with𝑄0 = 𝑄max. At this point, the thermody-
namic heat gains a maximum 𝑑𝑄 = 0 at the transition from upstream
to downstream. The velocity at that point is denoted by 𝛽★. This, in

Figure 4. 𝛽 (𝑥 )Γ (𝑥 ) for an absorption law of (15), Γ𝑢𝛽𝑢 = 30 and 𝜂 = 0.

Figure 5. The velocity at the sonic point as a function of Γ𝑢𝛽𝑢 for different
values of 𝜂.

turn, implies 𝑑 (𝑤/𝑛) = (1/𝑛)𝑑𝑝. Using in the last expression the
equation of state, (6), and evaluating 𝑤 and 𝑛 using Eqs. (12)-(9) we
find a relation between 𝑄max and Γ∗:

𝑄max =
Γ3
★

Γ𝑢 (3 − 2Γ2
★)

− 1 . (16)

Using 𝛽2
s =

(
𝑑𝑝
𝑑𝑒

)
𝑆
= (𝑤 − 𝑛/3𝑤)𝑆 we find

𝛽2
s = 1 − 1

Γ2
★

= 𝛽2
★ . (17)

Thus, the velocity of the flow achieves the local speed of sound at the
point where the absorbed energy reaches 𝑄max. Equating Eqs. (12)
and (16), we find the equation for 𝛽★ = 𝛽s:

Γ3
★(𝛽3

★ + 𝜂𝛽𝑢) + Γ𝑢𝛽𝑢 (2Γ2
★𝛽

2
★ − 1) (1 + 𝜂) + 7

4
Γ★𝛽★ = 0 (18)

For the highly relativistic upstream motion, Γ𝑢 → ∞ this equation
yields, as expected, 𝛽★ → 1√

3
. Fig. (5) depicts the dependence of the

flow velocity at the sonic point on the upstream velocity.
There is no steady state solution with 𝑄 > 𝑄max. We expect that

if this value is reached than either the downstream readjust itself
and the emissivity is reduced or a non steady state turbulent solution
develops.

MNRAS 000, 1–?? (2023)
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It is interesting to note that this relativistic solution is equivalent
to the classical Rayleigh flow (e.g. Emanuel 1986) that describes
the evolution of the flow when heat is added or removed from a
compressible ideal Newtonian fluid in a constant area duct. The flow
chokes thermally if too much energy is added. This happens at a
sonic point that corresponds to the critical value of heat deposition.
In our setting the modified upstream is equivalent to a supersonic
Rayleigh flow with heat deposition.

3 INSTABILITY OF THE CONTINUOUS SOLUTION

In the previous section, we found a steady-state solution only if
the fraction of the energy transferred from the downstream to the
upstream flow does not exceed the value given by Eq. (14). The
upstream velocity, and therefore the shock discontinuity, decreases
when the absorbed energy increases. At 𝑄 = 𝑄max, the flow velocity
reaches the sound speed at 𝑥 = 0 so that the transition to the subsonic
downstream flow becomes continuous. The absence of steady-state
solutions at 𝑄 > 𝑄max implies that at this condition, the flow be-
comes unsteady. This conjecture is supported by the fact that the
continuous solution at 𝑄 = 𝑄max is in fact unstable: the amplitude
of small sound perturbations diverges when the flow approaches the
sound point. The reason is that the sound perturbation is dragged
forward by the flow. Therefore the velocity of perturbations, that are
directed backward in the flow frame, drops to zero at the sound point,
which implies that the amplitude diverges. In this section, we present
the formal derivation of this instability.

For simplicity, we assume that Γ𝑢 ≫ 1. In this case, most of the
energy is converted into the thermal energy of leptons in the vicinity
of the sound point where the flow is only mildly relativistic. Therefore
one can neglect the contribution of cold protons into the equation of
state and write 𝑤 = 4𝑝. In this case, the flow is described only by the
energy and momentum equations (2), whereas using the continuity
equation is not necessary. We project the equations of motion (2) on
the 4-velocity and on the perpendicular direction. For this purpose,
make a dot product of the equations with 𝑢𝜈 and with the projection
operator 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 . This yields

𝜕𝑤𝑢𝜇

𝜕𝑥𝜇
− 𝑢𝜇

𝜕𝑝

𝜕𝑥𝜇
=

𝑑𝑆𝜇

𝑑𝑥1 𝑢𝜇 (19)

𝑤𝑢𝜇
𝜕𝑢𝜈

𝜕𝑥𝜇
− 𝜕𝑝

𝜕𝑥𝜈
+ 𝑢𝜈𝑢

𝜇 𝜕𝑝

𝜕𝑥𝜇
=

𝑑𝑆𝜈

𝑑𝑥1 − 𝑢𝜈𝑢𝜇
𝑑𝑆𝜇

𝑑𝑥1 (20)

We assume for simplicity that the momentum source is much smaller
than the energy source so that 𝑆1 = 0. Then we get for a one-
dimensional flow

4
(
𝜕𝑝Γ

𝜕𝑡
+ 𝜕𝑝Γ𝛽

𝜕𝑥

)
− Γ

𝜕𝑝

𝜕𝑡
− Γ𝛽

𝜕𝑝

𝜕𝑥
= Γ

𝜕𝑆0

𝜕𝑥
(21)

4𝑝
(
𝜕Γ𝛽

𝜕𝑡
+ 𝛽

𝜕Γ𝛽

𝜕𝑥

)
+ Γ𝛽

𝜕𝑝

𝜕𝑡
+ Γ

𝜕𝑝

𝜕𝑥
= −Γ𝛽 𝜕𝑆

0

𝜕𝑥
. (22)

In the steady state, these equations are reduced to

4𝑝Γ̄2𝛽′ + 3𝛽𝑝′ = 𝑆′0; (23)

4𝑝Γ̄𝛽2𝛽′ + 𝑝′ = −𝛽𝑆′0 , (24)

where prime denotes a 𝑥 derivative, and we used bar to denote param-
eters in the steady state. Eliminating 𝑝′ from these equations yields

4𝑝(1 − 3𝛽2)Γ̄2𝛽′ = (1 + 3𝛽2)𝑆′0, (25)

which means that the flow passes the sonic point, 𝛽 = 1/
√

3, only

if 𝑆′𝑒 vanishes at this point, consistent with our findings about the
critical point.

To study the stability of the steady-state flow, we consider a small
perturbation to the steady state solution, 𝛽 = 𝛽 + 𝛿𝛽 and 𝑝 = 𝑝 + 𝛿𝑝,
where 𝛿𝛽 ≪ 𝛽; 𝛿𝑝 ≪ 𝑝. Linearizing the equations, we get:

3
(
𝜕𝛿𝑝

𝜕𝑡
+ 𝛽

𝜕𝛿𝑝

𝜕𝑥

)
+ 4𝑝Γ̄2

(
𝛽
𝜕𝛿𝛽

𝜕𝑡
+ 𝜕𝛿𝛽

𝜕𝑥

)
+

4𝛽′Γ̄2𝛿𝑝 + (3𝑝′ + 8𝑝𝛽𝛽′Γ̄4)𝛿𝛽 = 0 , (26)

𝛽
𝜕𝛿𝑝

𝜕𝑡
+ 𝜕𝛿𝑝

𝜕𝑥
+ 4𝑝Γ̄2

(
𝜕𝛿𝛽

𝜕𝑡
+ 𝛽

𝜕𝛿𝛽

𝜕𝑥

)
+

4𝛽′
[
𝛽Γ̄2𝛿𝑝 + 𝑝Γ̄4 (1 + 𝛽2)𝛿𝛽

]
= −𝛿𝛽𝑆′0 . (27)

Assuming high frequency oscillations, such that 𝑐/𝜔 is much smaller
than the characteristic scale of the flow, we employ the WKB approxi-
mation. For the non-relativistic Rayleigh flow, the procedure has been
developed by Umurhan (1999).

Expanding the solution in powers of 1/𝜔 we obtain:(
𝛿𝛽

𝛿𝑝

)
=

(
𝛽0 + 𝛽1/𝜔 + . . .

𝑝0 + 𝑝1/𝜔 + . . .

)
exp

[
𝑖𝜔

(
−𝑡 +

∫
𝑑𝑥

𝑢

)]
, (28)

where 𝑢 is the wave phase velocity. Substituting this ansatz into Eqs.
(26) and (27) and collecting the terms of the order of 𝜔 one gets

3
(
−1 + 𝛽

𝑢

)
𝑝0 + 4𝑝Γ̄2

(
−𝛽 + 1

𝑢

)
𝛽0 = 0 , (29)(

−𝛽 + 1
𝑢

)
𝑝0 + 4𝑝Γ̄2

(
−1 + 𝛽

𝑢

)
𝛽0 = 0 . (30)

This set of equations has a nontrivial solution if

𝑢 =
𝛽 ± 1/

√
3

1 ± 𝛽/
√

3
. (31)

We see that the wave velocity is a relativistic superposition of the
flow velocity, 𝛽, and the sound velocity, ±1/

√
3. Substituting 𝑢 back

to Eq. (30) we find a relation between 𝑝0 and 𝛽0:

𝑝0 = ± 4
√

3
𝑝Γ̄2𝛽0 . (32)

In the next approximation, one collects terms of the order of 𝜔0. This
yields a set of equations of the form

𝑖M̂
(
𝛽1
𝑝1

)
= 𝚽 = − (33)(

3𝛽𝑝′0 + 4𝑝Γ̄2𝛽′0 + 4𝛽′Γ̄2𝑝0 + (3𝑝′ + 8𝑝𝛽𝛽′Γ̄4)𝛽0
𝑝′0 + 4𝑝𝛽Γ̄2𝛽′0 + 4𝛽′

[
𝛽Γ̄2𝑝0 + 𝑝(1 + 𝛽2)Γ̄4𝛽0

]
+ 𝛽0𝑆

′0

)
,

where the matrix M̂ is the same as in Eqs. (29,30). Substituting 𝑢

from Eq. (31), we find

M̂ =
1

Γ̄2 (𝛽 ± 1/
√

3)

(
∓
√

3 4𝑝Γ̄2

1 ∓ 4√
3
𝑝Γ̄2

)
. (34)

Substituting 𝑝′ from (24), 𝑝0 from (32) and 𝑆′𝑒 from (25) into 𝚽
yields:

𝚽 = −4𝑝Γ̄2
©«
(1 ±

√
3𝛽)𝛽′0 + 𝛽′

{
2
(
𝛽± 2√

3

)
1−𝛽2 −

2
(
𝛽±

√
3𝛽2

)
𝛽2+ 1

3

}
𝛽0

(𝛽 ±
√

3)𝛽′0 + 𝛽′
{
𝛽2± 4√

3
𝛽+1

1−𝛽2 −
𝛽2± 2√

3
𝛽− 1

3

𝛽2+ 1
3

}
𝛽0

ª®®®®¬
(35)

MNRAS 000, 1–?? (2023)
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The matrix M̂ is degenerate; the condition that Eqs. 34 has a solution
is

Det
©«
∓
√

3 −(1 ±
√

3𝛽)𝛽′0 + 𝛽′𝛽0

{
2(𝛽±2/

√
3)

1−𝛽2 − 2(𝛽±
√

3𝛽2 )
𝛽2+1/3

}
1 −(𝛽 ±

√
3)𝛽′0 − 𝛽′𝛽0

{
2(𝛽±2/

√
3)

1−𝛽2 − 2(𝛽±
√

3𝛽2 )
𝛽2+1/3

} ª®®®¬ = 0

(36)

Choosing the lower sign of ± in (36), which describes the wave
propagating backwards in the comoving frame, leads to

𝛽′0 (𝛽 − 1
√

3
) = −𝛽′𝛽0


𝛽2

2 −
√

3𝛽 + 7
6

1 − 𝛽2 −
3
2 𝛽

2 − 2√
3
𝛽 − 1

6

𝛽2 + 1
3

 (37)

Integrating (37) yields

𝛽0 =
𝐶

Γ̄
·
𝛽2 + 1

3
𝛽 − 1√

3

·
(

1 + 𝛽

1 − 𝛽

) 1√
3
, (38)

where C is an integration constant. Since 𝑝0 is proportional to 𝛽0
by Eq. (32), we conclude that at the zeroth order, both 𝛿𝛽 and 𝛿𝑝

diverge as 𝛽 approaches the speed of sound from above, meaning
that transition through the critical point is unstable. The result can
be understood physically. Perturbations in the upstream propagate at
the speed of sound both towards and away from the shock. As long
as the shock speed is supersonic, perturbations from the upstream
won’t reach the shock. However, as we reach the critical energy
transfer, the shock speed approaches the speed of sound. At this stage,
perturbations that move towards the shock reach it and accumulate
there, resulting in overall instability.

4 DISCUSSION

We presented a common framework unifying the description of
macroscopic precursor phenomena in relativistic shock waves. Our
general results for the perturbed upstream structure agree nicely with
those obtained in numerical PIC simulationa (e.g. Lemoine et al.
2019) in which high energy particles accelerated in the downstream
deposit their energy in the upstream. In a steady state, there is an up-
per limit to the fraction of energy transferred from the downstream
to the upstream (Derishev & Piran 2016). This maximal energy de-
creases when the momentum transferred increases. It approaches a
constant value, (2 −

√
3)/(

√
3 + 2𝜂) ≈ 0.155/(1 + 1.15𝜂), in the ex-

treme relativistic case, when the Lorentz factor of the cold upstream
approaches infinity.

There are several implications to this result. The first corollary
deals with radiation-mediated shocks, in which energy transport from
the downstream to the upstream is a dominant phenomenon. Typi-
cally, relativistic radiation mediated shocks involve a collisionless
subshock. Our analysis explains this phenomenon. The radiation flux
from the downstream may not be fine-tuned to the value required for a
smooth transition. It is important to stress that for radiation-mediated
shocks our solution is valid only for the upstream region. In this re-
gion any photon that interacts with the relativistic flow creates a pair
that moves with the flow. Indeed, in this region our solution is con-
sistent with those of Budnik et al. (2010a) and Granot et al. (2018).
However, the downstream is mildly relativistic and there the photons’
behavior is diffusive. For this reason Fig. 2 cannot be used to estimate
the subshock jump in these shocks. Moreover, the stability analysis
discussed in §3 may not be applicable.

A second novel result is that once the energy transport to the

precursor reaches a maximal value, the shock disappears, and the so-
lution passes through a sonic point. However, this marginal solution
is unstable. The physical reason for the instability is apparent. Per-
turbations in the upstream move at the speed of sound relative to the
local flow. When the upstream velocity ahead of the shock approaches
the speed of light, the "outgoing" perturbation directed towards the
far upstream is carried towards the sonic point. As they cannot cross
the sonic point, they accumulate there, resulting in instability.

This instability implies that if, for some reason, the energy flux
from the hot downstream is too large, it will induce unstable tur-
bulence in the upstream. The characteristic scale of this turbulence
will be macroscopic, as it should correspond to the scale in which
the energy flux is deposited in the upstream. One can speculate that
such large-scale turbulence could be the source of large-scale mag-
netic fields. If correct, this will resolve one of the puzzles involving
collisionless shocks in GRB afterglows - what is the origin of the
large scale (much larger than the local plasma skin depth) magnetic
fields that are implied from the afterglow observations (Gruzinov &
Waxman 1999).
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